skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Parameswaran, Aditya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Interactive visualization interfaces enable users to efficiently explore, analyze, and make sense of their datasets. However, as data grows in size, it becomes increasingly challenging to build data interfaces that meet the interface designer’s desired latency expectations and resource constraints. Cloud DBMSs, while optimized for scalability, often fail to meet latency expectations, necessitating complex, bespoke query execution and optimization techniques for data interfaces. This involves manually navigating a huge optimization space that is sensitive to interface design and resource constraints, such as client vs server data and compute placement, choosing which computations are done offline vs online, and selecting from a large library of visualization-optimized data structures. This paper advocates for a Physical Visualization Design (PVD) tool that decouples interface design from system design to provide design independence. Given an interfaces underlying data flow, interactions with latency expectations, and resource constraints, PVD checks if the interface is feasible and, if so, proposes and instantiates a middleware architecture spanning the client, server, and cloud DBMS that meets the expectations. To this end, this paper presents Jade, the first prototype PVD tool that enables design independence. Jade proposes an intermediate representation called Diffplans to represent the data flows, develops cost estimation models that trade off between latency guarantees and plan feasibility, and implements an optimization framework to search for the middleware architecture that meets the guarantees. We evaluate Jade on six representative data interfaces as compared to Mosaic and Azure SQL database. We find Jade supports a wider range of interfaces, makes better use of available resources, and can meet a wider range of data, latency, and resource conditions. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026
  3. Public records requests are a central mechanism for government transparency. In practice, they are slow, complex processes that require analyzing large amounts of messy, unstructured data. In this paper, we introduce RequestAtlas, a system that helps investigative journalists review large quantities of unstructured data that result from submitting many public records requests. RequestAtlas was developed through a year-long participatory design collaboration with the California Reporting Project (CRP), a journalistic collective researching police use of force and police misconduct in California. RequestAtlas helps journalists evaluate the results of public records requests for completeness and negotiate with agencies for additional information. RequestAtlas has had significant real-world impact. It has been deployed for more than a year to identify missing data in response to public records requests and to facilitate negotiation with public records request officers. Through the process of designing and observing the use of RequestAtlas, we explore the technical challenges associated with the public records request process and the design needs of investigative journalists more generally. We argue that public records requests represent an instance of an adversarialtechnical relationshipin which two entities engage in a prolonged, iterative, often adversarial exchange of information. Technologists can support information-gathering efforts within these adversarial technical relationships by building flexible local solutions that help both entities account for the state of the ongoing information exchange. Additionally, we offer insights on ways to design applications that can assist investigative journalists in the inevitably significant data cleaning phase of processing large documents while supporting journalistic norms of verification and human review. Finally, we reflect on the ways that this participatory design process, despite its success, lays bare some of the limitations inherent in the public records request process and in the ''request and respond'' model of transparency more generally. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026
  4. Free, publicly-accessible full text available May 19, 2026
  5. Interactive visualization interfaces enable users to efficiently explore, analyze, and make sense of their datasets. However, as data grows in size, it becomes increasingly challenging to build data interfaces that meet the interface designer's desired latency expectations and resource constraints. Cloud DBMSs, while optimized for scalability, often fail to meet latency expectations, necessitating complex, bespoke query execution and optimization techniques for data interfaces. This involves manually navigating a huge optimization space that is sensitive to interface design and resource constraints, such as client vs server data and compute placement, choosing which computations are done offline vs online, and selecting from a large library of visualization-optimized data structures. This paper advocates for a Physical Visualization Design (PVD) tool that decouples interface design from system design to provide design independence. Given an interfaces underlying data flow, interactions with latency expectations, and resource constraints, PVD checks if the interface is feasible and, if so, proposes and instantiates a middleware architecture spanning the client, server, and cloud DBMS that meets the expectations. To this end, this paper presents Jade, the first prototype PVD tool that enables design independence. Jade proposes an intermediate representation called Diffplans to represent the data flows, develops cost estimation models that trade off between latency guarantees and plan feasibility, and implements an optimization framework to search for the middleware architecture that meets the guarantees. We evaluate Jade on six representative data interfaces as compared to Mosaic and Azure SQL database. We find Jade supports a wider range of interfaces, makes better use of available resources, and can meet a wider range of data, latency, and resource conditions. 
    more » « less
    Free, publicly-accessible full text available June 17, 2026
  6. Organizations rely on machine learning engineers (MLEs) to deploy models and maintain ML pipelines in production. Due to models' extensive reliance on fresh data, the operationalization of machine learning, or MLOps, requires MLEs to have proficiency in data science and engineering. When considered holistically, the job seems staggering---how do MLEs do MLOps, and what are their unaddressed challenges? To address these questions, we conducted semi-structured ethnographic interviews with 18 MLEs working on various applications, including chatbots, autonomous vehicles, and finance. We find that MLEs engage in a workflow of (i) data preparation, (ii) experimentation, (iii) evaluation throughout a multi-staged deployment, and (iv) continual monitoring and response. Throughout this workflow, MLEs collaborate extensively with data scientists, product stakeholders, and one another, supplementing routine verbal exchanges with communication tools ranging from Slack to organization-wide ticketing and reporting systems. We introduce the 3Vs of MLOps: velocity, visibility, and versioning --- three virtues of successful ML deployments that MLEs learn to balance and grow as they mature. Finally, we discuss design implications and opportunities for future work. 
    more » « less